If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+24x+-16=0
We add all the numbers together, and all the variables
16x^2+24x=0
a = 16; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·16·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*16}=\frac{-48}{32} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*16}=\frac{0}{32} =0 $
| 7w+5=w-15 | | 2x-7x-13=-5x+6-13 | | (5x9.89-1)/11=(3-5x9.89)/6 | | –9p=–10p+7 | | a-3=7-4a | | P(d)=20d−20 | | -3=-1x-8 | | -2(k-12)=42 | | 7t-10=-2t+25 | | –10+8b=6b | | 3x-6=-2x+5 | | x=x-8x | | 7x+24=3x-6 | | 1=j/3+4 | | +32y=-32 | | 5(2c+7)-3=7(c+3) | | (6x+3)-(7x-19)=180 | | 5x+10=31-2x | | 2s+5s=7 | | 3x+10=4x+5= | | 1/3(9x-15)+2/5(10x-15)=-20 | | 4+4n=7+2n | | x+10=4x-47 | | 8x+12+x=15 | | 40=-1/3(8x+30)=2 | | 15.1u+2.34=3.4u | | 3s=2=12-2s | | 1x+5=1x+4 | | 5x+10=31+2x | | -8.2=-18.8+a | | 2t+-6=4 | | |4m+2|=38 |